ROOT SYSTEMS AND SYMMETRIES OF TORUS MANIFOLDS
نویسندگان
چکیده
منابع مشابه
The Symmetries of Equivalent Lagrangian Systems and Constants of Motion
In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...
متن کاملSymmetries and Motions in Manifolds
In these lectures the relations between symmetries, Lie algebras, Killing vectors and Noether’s theorem are reviewed. A generalisation of the basic ideas to include velocity-dependend co-ordinate transformations naturally leads to the concept of Killing tensors. Via their Poisson brackets these tensors generate an a priori infinitedimensional Lie algebra. The nature of such infinite algebras is...
متن کاملHidden symmetries and arithmetic manifolds
Let M be a closed, locally symmetric Riemannian manifold of nonpositive curvature with no local torus factors; for example take M to be a hyperbolic manifold. Equivalently, M = K\G/Γ where G is a semisimple Lie group and Γ is a cocompact lattice in G. For simplicity, we will always assume that Γ is irreducible, or equivalently that M is not finitely covered by a smooth product; we will also ass...
متن کاملFrobenius manifolds for elliptic root systems
In this paper, we show that the quotient space of the domain by the reflection group for an elliptic root system has a structure of Frobenius manifold for the case of codimension 1. We also give a characterization of this Frobenius manifold structure under some suitable condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2016
ISSN: 1083-4362,1531-586X
DOI: 10.1007/s00031-016-9387-4